首页> 外文OA文献 >Mapping and investigating phase anomalies in GPS data onboard Low Earth Orbiters
【2h】

Mapping and investigating phase anomalies in GPS data onboard Low Earth Orbiters

机译:绘制和调查近地轨道卫星GPS数据中的相位异常

摘要

To face important societal challenges like sea level variations, climate change and natural hazards management (tsunami detection, earthquakes, crustal deformations…), modern science rely more and more on precise geodesy. Precise Orbit Determination (POD) is of major concern in the frame of altimetry or gravity recovery missions like GOCE or GRACE. Using the GPS receiver onboard, orbits at cm-level accuracy are generally achieved in both kinematic and reduced-dynamic approaches using dual frequency code and phase measurements. GPS data processing generally uses the Ionospheric-Free (IF) combination to get rid of the ionospheric delay, which is varying with the season, latitude, local time and solar activity. However, large discrepancies in the orbit determination are still observed over polar and equatorial regions, which turn into artefacts and errors in the derived scientific products (gravity field, sea surface height…). More precisely, large RMS values are strongly correlated to phase anomalies occurring on GPS receivers: cycle slips, data unavailability or enhanced measurement noise, especially on L2 signal. Phase anomalies are generally observed when the satellite orbit crosses regions where ionospheric scintillations occur, which are defined as rapid fluctuations in phase and amplitude of the GNSS signals. The occurrence of scintillations exhibits large day-to-day variations and depends mainly on geomagnetic latitude, season and local time. At low latitudes, maximum occurrence of scintillations is observed 15-20° on either side of the geomagnetic equator. Scintillations also occur at auroral and polar latitudes, where their intensity increases with increasing geomagnetic activity.This paper aims at detecting, mapping and understanding the phase anomalies experienced by LEO satellites and analyzing their correlation with geomagnetic activity, latitude, season and local time. Several LEO satellites at different altitudes are analyzed (e.g. SWARM, GRACE or JASON), which allows a multi-layer analysis of the underlying ionospheric phenomenon, including scintillation. The latter are generally measured with several indices, like the amplitude index S4 or the phase index SigmaPhi (σφ), which are usually derived from 100Hz measurements performed by dedicated scintillation monitors. In this study, we compute a similar index (called pseudo-σφ) using GPS phase data at 1Hz coming from POD GNSS antenna. A detailed study of the occurrence rate and the severity of pseudo-σφ, together with cycle slips and other spurious phase data, will be performed for different LEO satellites.
机译:为了应对重要的社会挑战,例如海平面变化,气候变化和自然灾害管理(海啸探测,地震,地壳变形等),现代科学越来越依赖精确的大地测量。精确轨道确定(POD)是高度测量或重力恢复任务(如GOCE或GRACE)框架中的主要关注点。使用机载GPS接收机,通常在运动学和降动力方法中使用双频码和相位测量都可以达到厘米级的精度。 GPS数据处理通常使用无电离层(IF)组合来消除电离层延迟,该延迟随季节,纬度,当地时间和太阳活动而变化。但是,在极地和赤道区域仍观察到轨道确定方面的巨大差异,这在衍生的科学产品(重力场,海面高度……)中变成了伪像和误差。更准确地说,较大的RMS值与GPS接收器上发生的相位异常密切相关:周期滑移,数据不可用或增强的测量噪声,尤其是L2信号。当卫星轨道越过发生电离层闪烁的区域时,通常会观察到相位异常,这被定义为GNSS信号的相位和幅度的快速波动。闪烁的发生每天都有很大的变化,并且主要取决于地磁纬度,季节和当地时间。在低纬度地区,在地磁赤道两侧的15-20°处观察到最大的闪烁现象。闪烁也发生在极地纬度和极地纬度,其强度随着地磁活动的增加而增加。本文旨在检测,测绘和了解LEO卫星经历的相位异常,并分析它们与地磁活动,纬度,季节和当地时间的相关性。分析了几个不同高度的LEO卫星(例如SWARM,GRACE或JASON),这允许对潜在的电离层现象(包括闪烁)进行多层分析。后者通常使用几个指标进行测量,例如幅度指标S4或相位指标SigmaPhi(σφ),这些指标通常是由专用闪烁监视器执行的100Hz测量得出的。在这项研究中,我们使用来自POD GNSS天线的1Hz GPS相位数据来计算相似的指标(称为伪σφ)。对于不同的LEO卫星,将对伪σφ的发生率和严重性以及周跳和其他虚假相位数据进行详细研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号